Issue link: http://digital.canadawide.com/i/713703
AUGUST 2016 | 85 PHOTOGRAPHY COURTESY DIALOG Campus Energy System Conversion – UBC AES Electrical designed the electrical service. Included in their scope of work was a high voltage service that was fed to a 2000/2660kVA pad mount transformer (PMT) that then fed the building with a 600VAC, a three-phase secondary service, a 1000kW generator that was provided for backup, a combination of energy efficient fluorescent and LED lighting, security cameras, a card access door control system and TV screens (digital signage) in the main entry way and kitchen areas to display user information and for UBC Alerts. Due to the urban nature of the building, the electrical distribution equipment was located further away from the building for esthetics and future expansion, and the power service had to be run into the building in underground ducts. "Customized feeders had to be specified for this service," explains Hira Bopari, electrical designer at AES Engineering. "Installing the quantity and size of these feeders into the transformer was challenging as pulling and bending this size cable was extremely difficult for the contractor and space was an issue within the transformer. We ended up building a pull box attachment to the transformer to allow for space to bend and terminate the feeders." An alcove was designed into the building to locate the 1000kW exterior generator, which allowed for better sound attenuation. AES worked closely with the mechanical consultant and Ledcor to properly duct the exhaust and radiator air flow out of the alcove to allow for proper operation. AES also worked as the electrical engineers on the Energy Transfer Stations (ETS), providing power to new mechanical motors and in conjunction with Siemens for the control systems and UBC IT services throughout most of the UBC buildings. "In all buildings, the power distribution systems had to be assessed to see if they could accommodate the new mechanical equipment. We had to co-ordinate with AME to ensure that the correct voltage was being specified for the equipment in each building. Where there was limited electrical capacity for the mechanical equipment, distribution upgrades had to be undertaken," says Bopari. For higher precision of data and calculations, AME provided 3D scanning services for the mechanical rooms. The scan data was then converted to point clouds as a representation of existing conditions for use within design work. "UBC District Energy System point clouds were used to design and pre-fabricate the new mechanical systems that were installed on-site," explains Ahmet Ozata from AME. Speaking with everyone involved there is a great deal of pride in this project, which has far exceeded expectations. "You go from the early days of just having an idea, and then turning the idea into a business case, and finally all the trials and tribulations of project delivery and execution. The last 12 months of the project have been the most rewarding," enthuses UBC Energy and Water Services' Woodson. "We underestimated the benefits and the efficiency of the new hot water system, and that has more than offset the impact of new buildings being added to the campus since 2007. The size of the new hot water system is ideal." Since its completion, a number of agencies with aging steam systems have contacted UBC to seek advice on converting to hot water, proof of a project well done. "This is a huge win for UBC as they are significantly reducing their carbon footprint," says Nielsen. The ADES will enable UBC to achieve its ambitious target of reducing campus- wide greenhouse gas emissions. With the ADES project partly complete in 2015 UBC reduced its GHG emissions by 30 per cent, compared to 2007 levels, despite a 16 per cent growth in campus buildings since 2007. The hot water District Energy System will provide the transformational platform to achieve UBC's long-term targets of eliminating the use of fossil fuels on the campus by 2050, and advancing clean energy research. A win win all round. A LOCATION UBC, Vancouver, B.C. OWNER/DEVELOPER UBC Energy and Water Services PROJECT MANAGER UBC Project Services ARCHITECT (CEC) DIALOG GENERAL CONTRACTOR (CEC) Ledcor Construction Ltd. ENERGY CENTRE/PLANT PROCESS MECHANICAL CONSULTANT FVB Energy STRUCTURAL ENGINEER Fast + Epp BUILDING/ MECHANICAL CONSULTANT (ETS) AME Mechanical Consultants MECHANICAL CONSULTANT (CEC) FVB Energy DISTRICT PIPING/ MECHANICAL CONSULTANT Kerr Wood Leidal CIVIL ENGINEER/DISTRICT PIPING/ MECHANICAL CONSULTANT Kerr Wood Leidal ELECTRICAL CONSULTANT AES Engineering Ltd. LANDSCAPE ARCHITECT Perry + Associates TOTAL SIZE 20,000 square feet (CEC) 12 kilometres of piping TOTAL COST $88 million